Peppermint *(Mentha piperita)*

Paula Gardiner, MD

Principal Proposed Uses: Irritable bowel syndrome, other digestive disorders, decongestant, antitussive

Other Proposed Use: Topical treatment of headaches

Overview

Peppermint is widely used in food, cosmetics and medicines. It has been proven helpful in symptomatic relief of the common cold. It may also decrease symptoms of irritable bowel syndrome and decrease digestive symptoms such as dyspepsia and nausea, although more research is needed. It is used topically as an analgesic and to treat headaches. Peppermint is on the FDA’s GRAS (generally recognized as safe) list and whole herb peppermint has few side effects. However, peppermint oil can cause heartburn or perianal irritation, and is contraindicated in patients with bile duct obstruction, gallbladder inflammation and severe liver damage, and caution should be used in patients with GI reflux. Menthol products should not be used directly under the nose of small children and infants due to the risk of apnea.

Historical and Popular Uses

Peppermint’s Latin name, *Mentha piperita*, comes from the Greek *Mintha*, the name of a mythical nymph thought to have metamorphosed into the plant, and the Latin *piper*, meaning pepper. It is one of the world’s oldest medicinal herbs, and is used in both Eastern and Western traditions. Ancient Greek, Roman, and Egyptian cultures used the herb in cooking and medicine.

Peppermint is currently one of the most economically important aromatic and medicinal crops produced in the U.S. The world production of peppermint oil is about 8000 tons per year\(^1\). Peppermint leaf and oil are used for folk medicine, as flavoring agents, and in cosmetic and

Paula Gardiner
Longwood Herbal Task Force: http://www.mcp.edu/herbal/

Revised May 2, 2000
pharmaceutical products throughout the world2. Peppermint oil is the most extensively used of all the volatile oils3.

Peppermint is taken internally as a tea, tincture, oil, or extract, and applied externally as a rub or liniment. Herbalists consider peppermint an astringent, antiseptic, antipruritic, antispasmodic, antiemetic, carminative, diaphoretic, mild bitter, analgesic, anticatarrhal, antimicrobial, rubefacient, stimulant, and emmenagogue4, 5. Peppermint oil vapor is used as an inhalant for respiratory congestion. Peppermint tea is used to treat coughs, bronchitis, and inflammation of the oral mucosa and throat. It has traditionally been used to treat a variety of digestive complaints such as colic in infants, flatulence, diarrhea, indigestion, nausea and vomiting, morning sickness and anorexia, and as a spasmylytic to reduce gas and cramping. Peppermint is currently used to treat irritable bowel syndrome, Crohn’s disease, ulcerative colitis, gallbladder and biliary tract disorders, and liver complaints6, 7. Peppermint oil is used to relieve menstrual cramps8. Peppermint oil is used externally for neuralgia, myalgia, headaches, migraines and chicken pox5, 6.

\textbf{Botany}

\textit{Medicinal species: Mentha piperita}. It is thought to be a natural hybrid between spearmint (\textit{Mentha spicata}) and water mint (\textit{Mentha aquatica})2, 9.

\textit{Common names:} Peppermint, lamb mint, brandy mint, balm mint, curled mint, amenta, lammint

\textit{Botanical family:} Leguminosae or pea

\textit{Plant description:} The plant is a perennial, 50-60 cm (3-4 feet) high. The square stems are usually reddish-purple and smooth2. The leaves are short, oblong-ovate and serrate7. The flowers are purple-pinkish and appear in the summer months. The plant has runners above and below ground.

\textit{Where it’s grown:} Europe, Canada, and the US.
Biochemistry

Peppermint: Potentially Active Chemical Constituents

- Volatile oils: menthol, menthone, menthyl acetate, neomenthol, isomenthone, menthofuran, limonene, pulegone, alpha and beta pinene, and trans-sabinene hydrate
- Monoterpenes
- Caffeic acids
- Flavonoids
- Tannins

Peppermint contains about 1.2-1.5% essential oil. The volatile oil, also known as menthae piperitae aetheroleum, contains 30-70% free menthol and menthol esters and more than 40 other compounds. The principal components of the oil are menthol (29%), menthone (20-30%), and menthyl acetate (3-10%). Pharmaceutical grade oil, produced by distilling the fresh aerial parts of the plant at the beginning of the flowering cycle, is standardized to contain no less than 44% menthol, 15-30% methone, and 5% esters, in addition to various terpenoids. Other compounds found in the peppermint are flavonoids (12%), polymerized polyphenols (19%), carotenes, tocoferols, betaine, and choline.

Menthol is the primary component of the essential oil of peppermint. It occurs naturally as a colorless crystal or powder. Menthol is mostly responsible for the spasmolytic nature of peppermint. It stimulates bile flow, reduces the tone in the esophageal sphincter, facilitates belching, and has antibacterial properties. It is used as a local anesthetic agent in cold and cough preparations (Vicks Vapo-Rub, lozenges and syrups) and in liniments for insect bites, eczema, poison ivy, hemorrhoids, toothaches, and musculoskeletal pain (Ben Gay). It is used as an antitussive in chest rubs or inhaled as a steam vapor. Its use dates back to 1890, when it was developed as a topical rub to treat whooping cough. It is thought to provide a local anesthetic action on the lungs and throat, suppressing the cough reflex.
Experimental Studies

<table>
<thead>
<tr>
<th>Peppermint: Potential Clinical Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cardiovascular: Vasodilation</td>
</tr>
<tr>
<td>2. Pulmonary: Inhibition of respiration, nasal decongestant, antitussive</td>
</tr>
<tr>
<td>3. Renal and electrolyte balance: none</td>
</tr>
<tr>
<td>4. Gastrointestinal/hepatic: Digestive aid, antiemetic, antispasmodic, irritable bowel syndrome, cholesterol gallstones</td>
</tr>
<tr>
<td>5. Neuro-psychiatric: Headaches</td>
</tr>
<tr>
<td>6. Endocrine: none</td>
</tr>
<tr>
<td>7. Hematologic: none</td>
</tr>
<tr>
<td>8. Rheumatologic: none</td>
</tr>
<tr>
<td>9. Reproductive: none</td>
</tr>
<tr>
<td>10. Immune modulation: Anti-inflammatory</td>
</tr>
<tr>
<td>11. Antimicrobial: Antiviral, antibacterial, antifungal</td>
</tr>
<tr>
<td>12. Antineoplastic: none</td>
</tr>
<tr>
<td>13. Antioxidant: none</td>
</tr>
<tr>
<td>14. Skin and mucus membranes: Analgesic and coolant</td>
</tr>
<tr>
<td>15. Other/miscellaneous: none</td>
</tr>
</tbody>
</table>

1. **Cardiovascular:** Vasodilation
 i. *In vitro data:* In rat and guinea pig atrial and papillary muscle, both menthol and peppermint demonstrated Ca\(^{2+}\) channel blocking properties\(^{12}\).
 ii. *Animal data:* In rabbits, topical application of menthol led to vasodilation of blood vessels in the ear. Menthol, thymol, and methyl salicylate caused decreases in blood pressure but had no effects on respiration, heart rate, or blood flow in the femoral artery or gastrocnemius muscle\(^{13}\).
 iii. *Human data:* Peppermint has traditionally been used as a rubefacient. No clinical studies.

2. **Pulmonary:** Inhibition of respiration, nasal decongestant, antitussive
a. **Inhibition of respiration**: Stimulation of upper airway cold receptors causes a reflex inhibition of respiration and inhibits upper airway accessory respiratory muscle activity\(^{14}\). Menthol stimulates the same reflex inhibition of respiration in humans\(^{15}\).
 i. *In vitro data*: none
 ii. *Animal data*: In guinea pigs and dogs, but not cats, menthol causes reflex inhibition of respiration\(^{14, 16, 17}\).
 iii. *Human data*: In a clinical study of 44 newborn premature infants with gestational ages of 19-37 weeks, administration of menthol vapors from an open container of menthol crystals 1 cm from the nostril resulted in brief periods of apnea or a drop in respiratory rate in 43% of the infants\(^{18}\).

b. **Nasal decongestant**: Although menthol is widely used in medications to relieve common cold and flu symptoms such as nasal congestion and cough, studies show that peppermint and menthol do not have nasal decongestant properties. However, menthol does cause subjective improvement in nasal breathing.
 i. *In vitro data*: none
 ii. *Animal data*: In animals, topical application of menthol to nasal mucosa leads to nasal congestion\(^{19}\). In cats and dogs, vaporized menthol stimulated cold receptors in the respiratory tract\(^{20, 21}\).
 iii. *Human data*: Although nasal decongestion is not objectively decreased by menthol, there is a subjective improvement in the sensation of easier breathing by subjects\(^{22}\). This is thought to be due to menthol’s stimulation of cold receptors served by the trigeminal nerve in the nose, the vapor action on the sensory nerve endings of the nasal mucosa, and stimulation of the major palatine nerve\(^{1, 22, 23}\).

 In two studies, \(^{\text{l-menthol}}\) significantly enhanced the subjective sensation of nasal airflow compared to \(^{\text{d-isomenthol}}\), and \(^{\text{d-neomenthol}}\). It was \(^{\text{l-menthol}}\)’s specific action on nasal sensory nerve that caused the subjective enhancement of nasal airflow, not its peppermint smell\(^{24, 25}\).

 In 31 normal volunteers, five minutes of exposure to menthol vapor did not decrease nasal airflow resistance, but it did increase the sensation of nasal airflow and cause a cooling effect in the majority of the subjects\(^{26}\). In another study of 11 normal
adult subjects, nasal inhalation of l-menthol stimulated cold receptors in the upper
airway, reducing the sensation of respiratory discomfort associated with loaded
breathing. In both flow-resistive loading and elastic loading, inhalation of l-menthol
significantly reduced the sensation of respiratory discomfort without significantly
changing breathing pattern or ventilation27.

In a double blind randomized controlled trial, 62 subjects with nasal congestion
secondary to common cold infections were given a lozenge containing 11 mg menthol
or placebo. Nasal resistance to airflow significantly increased in both groups over the
two-hour experiment, while the subjects given the menthol reported a significant
improvement in the sensation of nasal airflow after ten minutes28, 29.

In a clinical trial, 30 subjects were exposed to normal air or the vapors of 1 g
menthol crystals, 1 g camphor crystals, or 10 ml of eucalyptus for five minutes, and
asked to exercise for five minutes. Inhalation of camphor, eucalyptus or menthol had no
effect on nasal airflow resistance (NAR), but exercise decreased NAR. The majority of
the subjects reported a cold sensation in the nose and a sensation of improved airflow
when exposed to the camphor, eucalyptus or menthol vapor30.

C. Antitussive

i. In vitro data: Menthol vapor lowered the surface tension on synthetic surfactant films.
The authors theorized that it may affect lung surface tension and lung function31.

ii. Animal data: In guinea-pigs who received a cough-inducing citric acid challenge,
menthol vapor significantly decreased cough in a dose-dependent fashion32.

iii. Human data: In a randomized trial, 20 healthy subjects received a citric acid cough
challenge every hour for five hours. Five minutes before each challenge the subjects
inhaled either menthol in eucalyptus oil or one of two placebos (pine oil or air). Menthol
inhalation caused a reduction in evoked cough when compared with either placebo33.

A mixture of aromatic oils including menthol applied as a chest rub significantly
reduced citric acid-induced cough for 30 and 60 minutes after administration34.

In a four-week randomized placebo controlled study, 23 subjects with chronic
mild asthma received either nebulized menthol (10 mg twice a day) or placebo. There
were no significant differences in vital capacity, forced expiratory volume in one
second, or change in peak expiratory flow rate, between the placebo group and the menthol group. The menthol group had a decrease in peak expiratory flow rate, had fewer wheezing episodes and used fewer bronchodilators35.

3. **Renal and electrolyte imbalance:** none

4. **Gastrointestinal/hepatic:** Digestive aid, antiemetic, antispasmodic, irritable bowel syndrome, bilary disorders

 a. **Digestive aid**
 i. *In vitro data:* none
 ii. *Animal data:* none
 iii. *Human data:* In a blinded controlled study, 20 healthy males (ages 21-23 and 34-35) and six subjects with non-obstructive dyspepsia were fed a radiolabeled solid test meal with and without peppermint oil (25 ml of water with 0.2 ml of Peppermint oil). After administration of peppermint oil, gastric emptying rate accelerated in both normal and patients with dyspepsia. None of the volunteers complained of any side effects36.

 b. **Antiemetic**
 i. *In vitro data:* none
 ii. *Animal data:* none
 iii. *Human data:* In a placebo-controlled study of gynecological surgery patients there was a statistically significant effect of peppermint in reducing postoperative nausea37.

 c. **Antispasmodic**
 i. *In vitro data:* Peppermint relaxes gastrointestinal smooth muscle by reducing calcium influx in both guinea pig large intestine and rabbit jejunum38-40. Peppermint oil and menthol have calcium channel blocking activity in rat and guinea pig atrial and papillary muscle, rat brain synaptosomes, and chick retinal neurones12, 39, 41, 42.
 ii. *Animal data:* In anesthetized guinea pigs, peppermint oil resolved a morphine-induced spasm on the sphincter of Oddi43.
 iii. *Human data:* In 20 subjects who were undergoing colonoscopy, administration of peppermint oil during the procedure relieved colon spasm within 30 seconds in each patient44. Similarly, in a placebo controlled trial in six adults, injection of 0.2 ml
peppermint oil suspension into the colon led to a statistically significant decrease in motor activity at two minutes and lasting 7-23 minutes45.

In a double blind, placebo-controlled randomized study of 141 patients receiving a barium enema, those who had 40 ml of topical peppermint oil preparation added to the barium suspension reported a significantly lower rate of residual spasm compared to placebo group (64\% vs. 35\%). In patients with diverticular disease, 72\% were spasm-free, compared to 21\% of diverticular disease patients in the placebo group. No adverse effects were reported46.

\textbf{d. Irritable bowel syndrome (IBS):} Enteric-coated capsules of peppermint oil are used to treat IBS and spastic colon.

i. \textit{In vitro data:} none

ii. \textit{Animal data:} In rat small intestine, peppermint oil at concentrations of 0.5 and 1 mg/ml inhibited enterocyte glucose uptake via a direct action at the brush border membrane. Inhibition of secretion by serosal peppermint oil is consistent with a reduced availability of calcium47.

iii \textit{Human data:} Of eight studies, five showed a positive effect of peppermint on IBS symptoms and three showed no effect.

A meta-analysis of five randomized controlled studies indicated that peppermint oil could be efficacious for the symptoms of IBS. However, the authors noted that methodological flaws in the studies prevented this recommendation beyond a reasonable doubt48-53.

In an open multicenter trial, 50 subjects suffering from IBS received three peppermint oil capsules (0.2 ml) 30 minutes before each meal daily for four weeks. There was a statistically significant decrease in signs and symptoms54.

In a one-month prospective, randomized, double blind, placebo-controlled trial, 110 outpatients with symptoms of IBS (66 men and 44 women, ages 18–70) took either Colpermin® (187 mg enteric-coated peppermint oil in a thixotropic gel) three to four times daily before meals or placebo. There was a statistically significant improvement in abdominal pain, distention, stool frequency and consistency, and flatulence in the Colpermin group compared to the placebo group. One patient in the peppermint oil
group reported heartburn (because of chewing the capsules) and one developed a mild transient skin rash55.

In two double blind, placebo-controlled crossover studies, 16 to 29 subjects with active IBS were given either enteric-coated peppermint oil (one or two 0.2 ml capsules three times daily) or placebo for three to four weeks. The peppermint oil capsules significantly increased the feeling of well being and decreased abdominal pain compared to placebo. There was no significant effect on stool frequency. The frequency of symptom-free days increased and severe symptoms decreased in the peppermint oil group but the data were not statistically significant. Two subjects developed heartburn49, 52.

In a double-blind crossover study, 40 patients with IBS received one to two capsules (0.2 ml peppermint oil, 0.2 mg hyoscyamine, or placebo) three times daily for two weeks. Treatment with peppermint oil tended to have a more pronounced effect on symptoms than placebo or hyoscyamine, but this was not statistically significant51.

In a double-blind, randomized, placebo-controlled, multicenter trial, 39 patients with non-ulcerative dyspepsia received Enteroplant® (an enteric-coated capsule with 90 mg peppermint oil and 50 mg caraway oil) or placebo three times daily for four weeks. Eighty-nine percent of the subjects noted improvement in pain intensity, compared to 40% in the placebo group. In the peppermint/caraway group, improvement of secondary symptoms such as the sensation of pressure, heaviness, tension, fullness, eructation and flatulence was statistically significant compared to the placebo group. Four subjects taking the Entroplant noted substernal burning, belching, and nausea50.

In a double-blind, placebo-controlled crossover trial, 25 subjects with IBS were given enteric-coated peppermint oil capsules (0.2 ml) three times daily for four weeks and then were changed to placebo for four weeks. There was a small but significant increase in stool frequency with peppermint. There was no significant change in scores for severity of symptoms or specific symptoms such as urgent defecation, pain, bloating or the sense of complete evacuation. Three subjects left the study due to perianal burning and one patient due to heartburn. Compliance was reported to be poor56.
In a double blind clinical trial, 34 patients with IBS in whom pain was a prominent symptom took two peppermint oil (0.2 mg) capsules or placebo three times daily for two and four weeks. The patients’ assessment of their overall symptoms showed no significant difference between peppermint oil and placebo53.

In human volunteers, enteric-coated peppermint capsules were found to dissolve in the colon and gelatin-coated peppermint capsules to dissolve in the stomach. To be effective in the treatment of spastic colon syndromes, the oil must reach the colon in an unmetabolized state57.

e. **Biliary disorders**

 i. **In vitro data:** none

 ii. **Animal data:** In animal studies, peppermint enhanced bile production58. Menthol inhibited hepatic S-3-hydroxy-3- methylglutaryl-CoA reductase activity in animal studies58-60

 iii. **Human data:** Menthol and related terpenes exert a choleretic effect. Several clinical studies with the drug Rowachol® (a mixture of six cyclic monoterpenes: menthol menthone, pinene, borneol, camphene, and cineol) have shown success in the treatment of patients with cholesterol stones in their gallbladders and bile ducts61-64.

 In a controlled prospective double blind trial, 23 patients with cholesterol gallstones were treated with ursodeoxy-cholic acid (UDCA) (11.1 mg/kg per day) or Ursomenth, a combination of UDCA plus menthol (4.75 mg/kg per day). After 17 months, complete dissolution had occurred in 53% of the Ursomenth group, versus 38% of the UDCA group65.

5. **Neuro-psychiatric:** **Headaches**

 i. **In vitro data:** Peppermint oil blocks smooth muscle contraction induced by serotonin and substance P58.

 ii. **Animal data:** In frogs, menthol noncompetitively blocked neuromuscular transmission66.

 iii. **Human data:** In a double blind, placebo-controlled, randomized crossover study, 32 healthy subjects underwent artificial painful stimulation and received four different topical test preparations: a) peppermint and eucalyptus oil with ethanol, b) peppermint
with ethanol, c) eucalyptus with ethanol, or d) ethanol alone. The combination of peppermint oil, eucalyptus oil and ethanol improved cognitive performance and had a muscle relaxing and mentally relaxing effect, but had little influence on pain sensitivity. Peppermint oil and ethanol exerted a significant analgesic effect and reduction in sensitivity to headache67.

In a double blind, placebo-controlled crossover study, 41 male and female subjects (18 to 65 years old) with tension headaches were treated with two capsules of acetaminophen (1000 mg) or placebo and topical peppermint oil or topical placebo solution. Compared to topical placebo, 10% peppermint oil in ethanol solution significantly reduced the clinical headache intensity within 15 minutes for over an hour. There were no reported adverse events68.

6. **Endocrine function:** none

7. **Hematologic:** Iron deficiency anemia
 i. **In vitro data:** none
 ii. **Animal data:** In rats, peppermint extract increased the intestinal absorption of iron69.
 iii. **Human data:** none

8. **Rheumatologic:** none

9. **Reproductive:** none

10. **Immune modulation:** Anti-inflammatory
 i. **In vitro data:** In LPS-stimulated monocytes from healthy volunteers, l-menthol had an anti-inflammatory effect on IL-1 beta production70. In rat peritoneal mast cells, l-menthol, menthone, and 1,8-cineole suppressed antigen-induced histamine release71.
 ii. **Animal data:** In guinea pigs, intraperitoneal administration of menthol inhibited homologous passive cutaneous anaphylaxis (PCA) mediated by IgE antibody71.
 iii. **Human data:** none

11. **Antimicrobial:** Antiviral, antibacterial, antifungal
 a. **Antiviral**
 i. **In vitro data:** Peppermint has significant antiviral activity72. Menthol is virucidal against Influenza, Herpes and other viruses in vitro. Aqueous extracts of peppermint
leaves were antiviral against Influenza A, Newcastle disease virus, Herpes simplex virus, and Vaccinia virus in egg and cell-culture systems.73.

ii. Animal data: none

iii. Human data: none

b. Antibacterial

i. In vitro data: Peppermint oil and menthol have moderate antibacterial effects against both Gram-positive and Gram-negative bacteria.74-78 Peppermint extracts are bacteriostatic against Streptococcus thermophilus and Lactobacillus bulgaricus.79 Menthol is bactericidal against Staphylococcus pyogenes, S. aureus, Streptococcus pyogenes, Serratia marcescens, Escherichia coli, and Mycobacterium avium.

ii. Animal data: none

iii. Human data: none

c. Antifungal

i. In vitro data: Menthol and peppermint oil are fungicidal against Candida albicans, Aspergillus albus and dermatophytic fungi.74-76, 80.

ii. Animal data: none

iii. Human data: none

12. Antineoplastic: none

13. Antioxidant: none

14. Skin and mucus membranes: Analgesic and coolant. Peppermint oil stimulates cold receptors on the skin and dilates blood vessels, causing a sensation of coldness and an analgesic effect.81

i. In vitro: none

ii. Animal data: Menthol is a topical vasodilator that enhances the absorption of other topical skin medications. On hairless mice, menthol (1-5% w/v) enhances the absorption of cortisone, mannitol, indomethacin, morphine hydrochloride, and propranolol.82-84

iii. Human data: Menthol moderates oral sensations of warmth and coldness.85, 86 In low concentrations, topical application of menthol causes a cooling sensation, while in high concentrations it causes irritation and local anesthesia.87

Thirty-one young adults given an oral .02% menthol aqueous solution for five seconds experienced a sensation of both warmth and coolness.88
In a clinical placebo-controlled study, ten normal subjects had Eucalyptamint® applied to one anterior forearm and a placebo to the other. There was a statistically significant increase in cutaneous blood flow, muscle temperature, and skin temperature after the application of Eucalyptamint, with the effects lasting up to 45 minutes.

In a three-fold crossover clinical trial on the arms of 15 healthy males, topical application of menthol reduced histamine-induced itch. However, in a clinical trial in 18 healthy subjects, menthol did not affect histamine-induced itch or pain sensation.

15. **Other/miscellaneous:** none
Toxicity and Contraindications

All herbal products carry the potential for contamination with other herbal products, pesticides, herbicides, heavy metals, pharmaceuticals, etc. This is particularly concerning with imports from developing countries.

Furthermore, allergic reactions can occur to any natural product in sensitive persons.

Allergic reactions to peppermint have been reported.

Potentially toxic compounds in peppermint: Pulegone, menthol. Pulegone, the toxic compound in pennyroyal, is also found in peppermint in much smaller proportions. In rats, doses of 80 and 160 mg of pulegone for 28 days caused atonia, weight loss, decreased blood creatinine content, and histopathological changes in the liver and the white matter of the cerebellum. Menthol causes hepatocellular changes in rats. In rats, peppermint oil caused cyst-like changes in the white matter of the cerebellum and nephropathy at doses of 40-100 mg/kg per day for 28-90 days.

Acute toxicity: Adverse reactions to enteric coated peppermint oil capsules are rare but can include hypersensitivity reaction, contact dermatitis, abdominal pain, heartburn, perianal burning, bradycardia and muscle tremor. Inhalation of menthol can cause apnea and larygoconstriction in susceptible individuals. In one case series, 12 patients noted contact sensitivity to menthol and peppermint with oral symptoms including burning mouth syndrome, recurrent oral ulceration, or a lichenoid reaction.

The excessive inhalation of mentholated preparation has caused reversible nausea, anorexia, cardiac problems, ataxia, and other CNS problems, which are thought to be due to the presence of volatile oils. There is a case report of a 13-year-old boy who, following inhalation of 5 ml of Olbas oil (containing 200 mg menthol) instead of the recommended few drops, experienced ataxia, confusion, euphoria, nystagmus, and diplopia.

Chronic toxicity: In rat studies, chronic exposure to high concentrations of menthol vapor have shown no gross toxic effects. There are no chronic toxicity studies in humans.

Limitations during other illnesses or in patients with specific organ dysfunction: Peppermint oil is contraindicated in obstruction of the bile ducts, gallbladder inflammation, and severe liver
damage. Patients with achlorhydria should use peppermint oil only in enteric coated capsules. Patients with GI reflux should use caution because peppermint may make GI reflux symptoms worse. Caution is recommended in patients with hiatal hernia, kidney stones, or GI reflux.

Interactions with other herbs or pharmaceuticals: Unknown

Safety during pregnancy and/or childhood: Direct application of peppermint oil to the nasal area or chest to infants should be avoided because of the risk of apnea, laryngeal and bronchial spasms, acute respiratory distress with cyanosis and respiratory arrest. Several case reports of adverse effects of menthol in infants led to an international symposium in 1966 to debate the safety of menthol preparations. The conclusion of the symposium was that menthol products are safe to use in infants but that they should not be applied directly to the nostrils.

There are reports that menthol can cause jaundice in newborn babies. In some cases this has been linked to a glucose 6-phosphatase dehydrogenase deficiency.

There are no data available of the safety of peppermint in pregnancy.
Typical Dosages

Provision of dosage information does NOT constitute a recommendation or endorsement, but rather indicates the range of doses commonly used in herbal practice.

Doses are given for single herb use and must be adjusted when using herbs in combinations.
Doses may also vary according to the type and severity of the condition treated and individual patient conditions.

Example of typical adult dosages:

Tea/infusion: 1-2 teaspoons of dried leaf steeped in 8 ounces of water and taken as needed

Internal use of peppermint oil:

For digestive disorders: 0.2-0.4 ml 0 three times daily in dilute preparations or in suspension

For irritable bowel syndrome: 0.2-0.4 ml, three times daily in enteric coated capsules

As an inhalation: 3-4 drops added to hot water; or as lozenge containing 2-10 mg58.

External use of peppermint oil: In dilute liquid or semi solid preparations as analgesic, anesthetic, or antipruritic (0.1-1.0% m/m), or as a counter-irritant (1.25-16 % m/m) rubbed onto the affected area58 no more than 3-4 times a day.

Pediatric dosages: Unknown

Availability of standardized preparations: Yes

Dosages used in herbal combinations: Variable
REFERENCES

86. Green BG. Menthol inhibits the perception of warmth. Physiol Behav 1986; 38:833-8.

100. Sainio EL, Kanerva L. Contact allergens in toothpastes and a review of their hypersensitivity. Contact Dermatitis 1995; 33:100-5.

